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Stereoelectrochemistry being an important factor in organic molecules,

it means that the electronic delocalization must be taken into account in three-dimension. 

This leads to what is called « stereoelectronic effects ». 

In other words, electron delocalization can take place only

when there is proper alignment of orbital.

STEREOELECTRONIC EFFECTS IN ORGANIC CHEMISTRY
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Foundational Concept:  Hückel Model vs Pauling-Slater Model

J.C. Slater, Phys. Rev., 1931, 37, 481.

L. Pauling, J. Am. Chem. Soc., 1931, 53, 1367.

W.A. Bernett, J. Chem. Educ., 1967, 44, 17.
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Pauling’s Defence of Bent-Equivalent Bonds: A View of Evolving Explanatory 

Demands in Modern Chemistry

Julia R. Bursten

Annals of Science 2012, 69 (1), 69-90
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VALENCE BOND (VB) AND MOLECULAR ORBITAL (MO)

(1) Both models predict the behavior of electrons in bonds by using quantum-mechanical results about 

the nature of electrons obtained from the “Schrödinger equation”.

(2) MO was born out of primarily physical interest and considers the electron as spread out over the 

entire system of atomic centres in a molecule.

(3) VB was born out of primarily chemical interest and considers the electron as localized to a definite 

range of atomic centres.

VB is associated with Lewis’ classical valence theory of chemical bonding, i.e., one electron from each 

atomic centre forms the electron pair in a covalent bond. Such restriction is absent in MO theory.

(4) Both models refer to atomic orbitals, s, p, d, f, which by hybridization leads to s, p and t hybridized 

atomic orbitals which by association can form bonding in molecules.  

(5) Thus, olefins (C=C) can either be s-p or t (Bent-equivalent Bond).
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There was however a problem.
How to explain electronic conjugation in organic molecules?

Valence Bond method (VB)

Pauling introduced the “theory of resonance”

Molecular Orbital theory (MO)

Introduced by Mulliken, Coulson, Longuet-Higgins and Lennard-Jones.

“MO based method known as a “generalized perturbation model”

is used to describe bonds in difficult-to-model conjugated bonds in aromatic compounds.

N.B.  Methods (MO) were accurate and the maths were simpler than the VB model. MO 

became much more popular, but experimental organic chemists continued to use the 

theory of resonance!

Cf. G.W. Wheland, Resonance in Organic Chemistry, Wiley, NY, 1955
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a-p vs t Bonds in Carbonyl Group and Antibonding Orbitals
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The Antiperiplanar Hypothesis,

a Traditional Stereoelectronic Concept is Based on

SN2 Reaction

Anomeric Effect

E2 Elimination
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Staggered vs Eclipsed Conformation

Ethane

(CH3-CH=CH2)

Propene

(3 kcal/mol)

(2 kcal/mol)
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Hyperconjugation Affecting Conformational Stability

Propene

Butene

K. Inomata, J. Synth. Org. Chem. Jpn, 2009, 67, 1172.
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Conformational Analysis: Enol Ethers

J. D. Mersh, J. K. M. Sanders, Tetrahedron Lett., 1981, 22, 4029.
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K. L. Brown, L. Damm, J. D. Dunitz, A. Eschenmoser, R. Hobi, C. Kratky,

Helv. Chim. Acta 1978, 61, 3108.

Enamine Conformation and Reactivity

N.B. Pyrrolidine enamines are more nucleophilic than piperidine enamines.
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Stereoelectronic Effects (S.E.) and Conformation of Acetals

and Related Functions

Anomeric Effect
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Eliel
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Relative Stability (exp.)

(80%) (20%)

Axial Isomer is More Stable than the Equatorial One in Glycosides !

Lemieux

One example:
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Conformation of Glycosides:

Exo and Endo Anomeric Effects and Relative Stability

Evidence by NMR and Rx

a and b Glycosides exist exclusively in A1 and E1
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REPULSION STABILIZATION

Electronic

ANOMERIC EFFECT (explanation)

Influence on
bond length

and
oxygen basicity

BOND – NO BOND RESONANCEHYPERCONJUGATION

F C

F
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F F C

H

F+

F-

L. Brockway.  J.Phys.Chem. 41, 185 (1937)
L. Pauling. Nature of Chemical Bond, 314 (1960)
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Lemieux
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Exo-Anomeric Effect and Steric Repulsion
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Bond Length Changes in the Ground State of Axial and Equatorial 

Aryloxytetrahydropyrans (X-rays analysis)

O

OAr

H
n

x

x : exocyclic bond increases

n:  endocyclic bond decreases

with a greater pKA

axial OAr

x : exocyclic bond increases

equatorial OAr

n:  endocyclic bond does not change

to a less extent

O

H

n

x
OAr

Kirby
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Relative Population of Two Species a and b at Equilibrium (25°C)
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Cyclohexane Conformation
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CH3 CH2 CH3 OCH3

CH3 O
CH3 CH3CH3

Steric Effects in n-Butane and

CH3

H
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CH3

H

H

H

H

H

H
H

2 x 0.85 = 1.7 2 x 0.4 = 0.8 > 4.0 kcal/mol

1.7 + 0.85 = 2.55 0.85

0 3 x 0.85 = 2.55 kcal/mol

H
H

H
H

H
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Evaluation of the Anomeric Effect

57% (0) 43% (0.17 kcal/mol)

1 gauche form of n-butane = +0.85

1 OR axial to cyclohexane = +0.8

entropy factor = -0.42 (favor 5)

1 anomeric effect (A.E.) = -1.4

energy difference = -0.17 kcal/mol (favor 5)

steric effect = +1.65 (favor 8)

1 anomeric effect (A.E.) = -1.4 (favor 7)

energy difference = -0.25 kcal/mol

45% (0.25) 55% (0)

Descotes

Deslongchamps
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1,7-Dioxaspiro[5.5]undecane (Spiroketal)

Anomeric Effect and Relative Stability)

Gauche form of n-propyl ether (OCH2CH2CH3)   =   0.4

Gauche form of n-butane                                      =   0.9 Deslongchamps

9A 9B 9C

Steric Effects +1.6 +2.6 +3.6

A.E. -2.8 -1.4 0

-1.2 (0) +1.2 (2.4) 3.6 (4.8 kcal/mol)
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Conformation of Mono and Dithioacetals

Eliel

65% 35%

90% 10%
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Dithio Spiroketal

Deslongchamps

thermo

H+

(98%) (2%) 
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Monothio Spiroketal

Deslongchamps

(100%) 

(100%) 
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Conformation of 1,3-Oxazine and 1,3-Diazane

Lemieux

Lemieux

Eliel

1 A.E.  =  -1.4 2 A.E. =  -2.8

2 gauche butane = +1.8

1 gauche n-propylether = +0.4

-1.4 -0.6

0 +0.8 kcal/mol

Newton

(90%) (10%) 

MAJOR MINOR 

(FAVORED) 
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Reverse Anomeric EFfect

O

H

N +

O

H

N +

HO

HO

HO

HO

glucose

H

N +

H N
+

O

H

N
+

O

H

N
+

H

HO

HO

H

HO

HO

X-rays

electrostatic attraction

Lemieux

Deslongchamps



35

THE ANOMERIC EFFECT

by R.U. Lemieux

• Unequivocal evidence for the conformational preferences of sugars

and their derivatives became available in 1958 [ 1, 2 ].

• Thus, it became possible to assign a stereoelectronic contribution to 

the relative thermodynamic stabilities of the a- and b-forms of sugar 

derivatives since this contribution, by favoring the axial orientation, 

was opposite to that expected from a consideration of non-bonded 

interactions [ 3 ].

[ 1 ] R.U. Lemieux, R.K. Kulling, H.J. Bernstein and W.G. Schneider.

J. Am. Chem. Soc. 80, 6098 (1958).

[ 2 ] R.U. Lemieux.

Current Contents (Citation Classic), 26 10 (1980).

[ 3 ] R.U. Lemieux and N.J. (Paul) Chü.

Abstracts of Papers, Am. Chem. Soc. 133, 31N (1958).
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THE ANOMERIC EFFECT  (cont’d)

by R.U. Lemieux

• Riiber and Sørensen [ 4 ], in 1933, had introduced the term

“anomeric” as a class name for the a- and b-forms of sugars and

their glycosides. Accordingly, the term “anomeric effect” was

introduced in 1959 [ 5 ] to describe this stereoelectronic feature

which appeared to be a general property of acetal linkages. It was

recognized [ 5 ] that the anomeric effect should have an important

influence on the orientation of the aglycon of a glycoside.

[ 4 ] C.N. Riiber and N.A. Sørensen.

Kgl. Norske Videnskat. Selskabs.  Skrifter 7, 50 (1933).

[ 5 ] R.U. Lemieux.

Abstracts of Papers, Am. Chem. Soc. 135, 5E (1959).
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THE ANOMERIC EFFECT  (cont’d)

by R.U. Lemieux

• The term “exo-anomeric effect” was introduced in 1969 [ 6 ] to

specify this component of the overall anomeric effect in the case

of glycosides wherein the pyranose ring is anchored in a specific

chair conformation.

• The term “reverse-anomeric effect” was introduced in 1965 [ 7 ] in

view of the observation that pyridinium a-glycopyranosides

possessed abnormal high-energy conformations.

[ 6 ] R.U. Lemieux, A.A. Pavia, J.C. Martin and K.A. Watanabe.

Can. J. Chem. 47, 4427 (1969).

[ 7 ] R.U. Lemieux and A.R. Morgan.

Can. J. Chem. 43, 2205 (1965).


