SECTION 6

Stereoelectronic Effects (S.E.)

and Reactivity of Esters and Related Functions

(2018)

Esters and Related Functions

N. S. True, R. K. Bohn. J. Phys. Chem. 1978, 82, 478-479.

2

Secondary Stereoelectronic Effects and Relative Stability of Esters

N. S. True, R. K. Bohn. J. Phys. Chem. 1978, 82, 478-479.

τ versus σ - π in Z-ester and E-ester (lactone) and Justification of the Relative Importance of Resonance Structures

Z-esters:

E-esters/lactones:

Comparison Between Z and E-esters

LACTONE: RATE OF HYDROLYSIS 1N NaOH / Dioxan-H₂O (60:40)

	Ring size	Rate		
γ-butyro lactone valero lactone	5	1480		
	6 55000			
	7	2250		
	8	3530		
	9	116		
	10	0.22		
	11	0.55		
	12	3.3		
	13	6.0		
	14	3.0		
	16	6.5		
	Ő			
	R-C [″] O-(CH ₂) ₃	сн ₃ 8.4		

E (cis)

Z (trans)

R. Huisgen and H. Ott. <u>Tetrahedron</u> 1959, *6*, 253-267.

CH Acidity in Z and E-esters

Meldrum's Acid

E. M. Arnett, S. G. Maroldo, S. L. Schilling, J. A. Harrelson, J. Am. Chem. Soc., 1984, 106, 6759.

1) D. Villemin et al Eur. Chem. Bull. 2016,5(7), 274-279 2) P. G. Seybold et al Int. J. Quant. chem. 2009, 109, 3679-31 A. L. Perez et al J. chem. Educ. 2000, 77(7), 910-915

X-rays

Experimental Evidence for Secondary Stereoelectronic Effects

Iodide Displacement on Lactonium Salt

SN₂ on secondary carbon faster than primary one due to SE control

Resonance Structures in Lactonium Salt

N. Beaulieu, P. Deslongchamps, Can. J. Chem., 1980, 58, 164.

Stereocontrolled Cleavage of Hemiortoester Tetrahedral Intermediate

τ Bond and Hemiorthoester Cleavage

O¹⁸-Exchange Concurrent to Hydrolysis in Ester and Lactone

Z-ester undergoes O_{18} exchange as $k_2 \approx k_3$

O¹⁸-Exchange Concurrent to Hydrolysis in Z Ester

In both k₂ and k₃, cleavage takes place with 2 secondary stereoelectronic effects (or 2 A.E.)

- (1) Groupe partant semblable
- (2) Transfert de protons à la vitesse de diffusion

τ Bond and Z Ester Hydrolysis

Lactone (*E*-ester) do not undergo O¹⁸-Oxygen Exchange Concurrent with Hydrolysis

in k_3 , cleavage takes place with 2 secondary stereoelectronic effects in k_2 , cleavage takes place with 1 secondary stereoelectronic effects k_3 is thus greater than k_2

consequently no O^{18} exchange even if there is conformational exchange (37 to 38) 18

Prediction of Hydrolytic Pathway of Lactone

Relative Rate of Hydrolysis of Isomeric Lactones

τ Bond and Lactone Tetrahedral Intermediates

Reaction of Alkoxide on Lactonium Salt

Experimental proof of stereoelectronic control

<u>46</u>

<u>50</u>

τ Bonds – Alkoxide on Lactonium Salt

Hydrolysis of Cyclic Orthoesters

The formation of esters from the mild acid hydrolysis of orthoesters proceeds through the formation of a hemi-orthoester tetrahedral intermediate as described by the following equation

Mild Acid Hydrolysis of Bicyclic Orthoester with Two Different Alkoxy Groups

Nine Conformers of Cyclic Orthoester

B, D, G, H and I are eliminated because of strong steric effects (>4 kcal).C is unreactive.

A, E and F should be reactive.

C is unreactive in acid

The Three Reactive Conformers and their Corresponding Dialkoxy Carbonium Salt

- (1) E cleaves with no secondary S.E.
- (2) A and F cleave with one secondary S.E.
- (3) F yields one molecule (ring is cleaved)
- (4) A yield two molecules (favored entropically)

A is thus the favored cleavage

τ Bonds and the Three Reactive Conformers

EE

ΖE

N.B. ~5% lactone in case of no ring inversion is explained by cleavage of the boat form of 20.

>5% lactone in case of ring inversion is explained by cleavage as above and by cleavage of <u>23</u> and <u>24</u>.

	pH 0.9	pH 1.9 L%/E%	pH 3 L%/E%	pH 4 L%/E%	pH 4.7 L%/E%
	L%/E%				
COCH ³	22:78	21:79	22:78	21:79	15:85
OEt OEt	19:81	21:79	26:74	6:94	4:96
OCH ₃ OCH ₃	33:67	32:68	31:69	16:84	11:89
OCH ₃ 6 OCH ₃ 6 OCH ₃ 6 3	53:47	55:45	53:47	13:87	7:93
	10:90 3	10:90	9:91	<5:>95	<5:>95
Соснз	19:81	14:86	13:87	7:93	-
CCH ₃ OCH ₃	-	6:94	<5:>95	<5:>95	_

Product ratio of lactone (L) and hydroxy-ester (E) from the hydrolysis of cyclic orthoesters as a function of pH*

* The pH values refer to the pH of D₂O/DCl solutions before the mixing with the solution of orthoester in hexadeuterated acetone (see Experimental).

RESUME:

With Chair Inversion: pH < 3: more lactone

Without Chair Inversion: all pH: > 95% hydroxy-ester

Hemiorthoester Mechanism of Fragmentation as a Function of pH

Small % of Lactone Produced in Cyclic Orthoester Hydrolysis

CONCLUSION

~ 5% LACTONE IS PRODUCED VIA 5% COMPETITIVE BOAT-LIKE TS

Cyclic Orthoester with Ring Inversion

CONCLUSION

MORE LACTONE IS PRODUCED

S. Li, P. Deslongchamps. <u>Tetrahedron Lett</u>. *35*, 5641 (1994). P. Deslongchamps, Y.L. Dory, S. Li. <u>Tetrahedron</u> *56*, 3533 (2000). **C.A. Bunton, R.H. De Wolfe.** <u>J. Org. Chem</u>. *30*, 1371 (1954).

BIMOLECULAR PROCESS: RELATIVE RATE

Sinnott Opposition to « Stereoelectronic » Effect

Sinnott¹ concluded that there is evidence that neither a steric nor any transition state "stereoelectronic effect" is responsible for the lower reactivity of the orthocarbonate vs orthoester. This was based on an incorrect statement.² "In the S_4 conformation, each C–O bond is antiperiplanar to an sp³ lone pair of electrons on each of the remaining three oxygen atoms." On the contrary, the S_4 can have only two such lone pairs.

¹ Kandanarachchi, P., Sinnott, M. L. <u>J. Chem. Soc., Chem. Commun</u>. 1992, 777. ² Li, S., Deslongchamps, P. <u>Tet. Lett</u>. 1994, *35*, 5641.

RELATIVE RATE OF HYDROLYSIS: ORTHOESTER VS ORTHOCARBONATE

Shigui LI

ORTHOESTER AND ORTHOCARBONATE:

RELATIVE RATE, CONFORMATIONAL ANALYSIS, AND STEREOELECTRONIC EFFECTS

1

5

Me

11

38

Acid Hydrolysis of Tricyclic Orthoester

P. Deslongchamps, Y.L. Dory, S. Li. Heterocycles 1996, 42, 617.

5 (80:20) |slow slow 2 5 | slow A fast 3 5 6 slow 🖡 fast 9 18 (no competing reclosure step)

fast

1

39

Reaction Pathways of Hydrolysis of Orthoester

Position of transition state

DIFFERENCE OF REACTIVITY BETWEEN OXENIUM AND DIOXENIUM IONS

Orthoester <u>3</u> gives <u>5</u> with axial R group; <u>4</u> is unreactive

<u>3</u> and <u>4</u> ($R_1 = R_2 = H$; $R_1 = R_2 = CH_3$; $R_1 = CH_3$, $R_2 = H$) Grignard Reagent ($R_1 = CH_3$, C_2H_5 , (CH_3)₂CH, *p*-RCH₆H₄)

N.B. Leaving OCH₃ group and incoming alkyl group prefer axial orientation.