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SECTION 6

Stereoelectronic Effects (S.E.)

and Reactivity of Esters and Related Functions

(2018)
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Esters and Related Functions

2 conformations

Primary Stereoelectronic Effects

Resonance Structure and 

Stereoelectronic Effect in Ester

N. S. True, R. K. Bohn. J. Phys. Chem. 1978, 82, 478-479.
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Secondary Stereoelectronic Effects and Relative Stability of Esters

even t-butyl formate:

N. S. True, R. K. Bohn.  J. Phys. Chem. 1978, 82, 478-479.
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Z-esters:

E-esters/lactones:

t versus s-p in Z-ester and E-ester (lactone)

and Justification of the Relative Importance of Resonance 

Structures

IR = 1730 cm-1

IR = 1790 cm-1
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Comparison Between Z and E-esters
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LACTONE:  RATE OF HYDROLYSIS 1N NaOH / Dioxan-H2O (60:40)

Ring size             Rate

5…………………1480

6………………  55000

7…………………2250

8…………………3530

9…………………..116

10……………………0.22

11……………………0.55

12……………………3.3

13………………..….6.0

14…………………...3.0

16……………………6.5

g-butyro lactone

valero lactone

R. Huisgen and H. Ott.  Tetrahedron 1959, 6, 253-267.

…..8.4
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CH Acidity in Z and E-esters
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Meldrum’s Acid

E. M. Arnett, S. G. Maroldo, S. L. Schilling, J. A. 

Harrelson,

J. Am. Chem. Soc., 1984, 106, 6759.
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Relative Stability of Dialkoxy-carbonium Ion
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Experimental Evidence for Secondary Stereoelectronic Effects

Iodide Displacement on Lactonium Salt

SN2 on secondary carbon faster than primary one due to SE control

slow
fast
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Resonance Structures in Lactonium Salt

less important more important

lactone (E)lactonium saltiodo ester (Z)

N. Beaulieu, P. Deslongchamps, Can. J. Chem., 1980, 58, 164.
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Stereocontrolled Cleavage of Hemiortoester 

Tetrahedral Intermediate

primary  (2 A.E.)
secondary  (1 A.E.)

primary  (1 A.E.)
secondary  (2 A.E.)

primary  (2 A.E.)
secondary  (2 A.E.)
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t Bond and Hemiorthoester Cleavage
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O18-Exchange Concurrent to Hydrolysis in Ester and Lactone

Z-ester undergoes O18 exchange as k2  k3
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O18-Exchange Concurrent to Hydrolysis in Z Ester

In both k2 and k3, cleavage takes place with

2 secondary stereoelectronic effects (or 2 A.E.)

(1) Groupe partant semblable

(2) Transfert de protons à la vitesse de diffusion



17

t Bond and Z Ester Hydrolysis
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Lactone (E-ester) do not undergo O18-Oxygen

Exchange Concurrent with Hydrolysis

in k3, cleavage takes place with 2 secondary stereoelectronic effects

in k2, cleavage takes place with 1 secondary stereoelectronic effects

k3 is thus greater than k2

consequently no O18 exchange even if there is conformational exchange (37 to 38)
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Prediction of Hydrolytic Pathway of Lactone

Relative Rate of Hydrolysis of Isomeric Lactones
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t Bond and Lactone Tetrahedral Intermediates
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Reaction of Alkoxide on Lactonium Salt

Experimental proof of stereoelectronic control
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t Bonds – Alkoxide on Lactonium Salt
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Hydrolysis of Cyclic Orthoesters

Possible product formation:

The formation of esters from the mild acid hydrolysis of orthoesters proceeds through the 

formation of a hemi-orthoester tetrahedral intermediate as described by the following equation

hemi-orthoester
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Mild Acid Hydrolysis of Bicyclic Orthoester with Two Different Alkoxy Groups

Kirby

Deslongchamps

Tet. Lett. 1982, 4163-4166.
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Nine Conformers of Cyclic Orthoester

B, D, G, H and I are eliminated because of strong steric effects (>4 kcal).

C is unreactive.

A, E and F should be reactive.

(unreactive)
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C is unreactive in acid



27

The Three Reactive Conformers and their

Corresponding Dialkoxy Carbonium Salt

(1) E cleaves with no secondary S.E.

(2)  A and F cleave with one secondary S.E.

(3)  F yields one molecule (ring is cleaved)

(4) A yield two molecules (favored entropically)

A is thus the favored cleavage



28

t Bonds and the Three Reactive Conformers
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N.B.  ~5% lactone in case of no ring inversion is explained by cleavage of the boat form of 20.

>5% lactone in case of ring inversion is explained by cleavage as above and by cleavage of 23 and 24.
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RESUME:            WIth Chair Inversion:  pH < 3:  more lactone

pH > 3:  < 5% lactone

WIthout Chair Inversion:  all pH: > 95% hydroxy-ester

Product ratio of lactone (L) and hydroxy-ester (E) from the hydrolysis of cyclic orthoesters as a function of pH*

[ Can.J.Chem. 1985 ]
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Hemiorthoester Mechanism of Fragmentation as a Function of pH
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Small % of Lactone Produced in Cyclic Orthoester Hydrolysis

CONCLUSION

~ 5% LACTONE IS 

PRODUCED

VIA 5% COMPETITIVE

BOAT-LIKE TS
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Cyclic Orthoester with Ring Inversion

CONCLUSION

MORE LACTONE IS 

PRODUCED

but close back 

due to internal

return



34

C.A. Bunton, R.H. De Wolfe.

J. Org. Chem. 30, 1371 (1954).

S. Li, P. Deslongchamps.

Tetrahedron Lett. 35, 5641 (1994).

P. Deslongchamps, Y.L. Dory, S. Li.

Tetrahedron 56, 3533 (2000).
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Sinnott Opposition to « Stereoelectronic » Effect

Sinnott1 concluded that there is evidence that neither a steric nor any transition state “stereoelectronic effect” is 

responsible for the lower reactivity of the orthocarbonate vs orthoester. This was based on an incorrect statement.2

“In the S4 conformation, each C-O bond is antiperiplanar to an sp3 lone pair of electrons on each of the remaining 

three oxygen atoms.”  On the contrary, the S4 can have only two such lone pairs.

1 Kandanarachchi, P., Sinnott, M. L.  J. Chem. Soc., Chem. Commun. 1992, 777.
2 Li, S., Deslongchamps, P.  Tet. Lett. 1994, 35, 5641.
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Shigui LI

RELATIVE RATE OF HYDROLYSIS:

ORTHOESTER VS ORTHOCARBONATE
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ORTHOESTER AND 

ORTHOCARBONATE:

RELATIVE RATE,

CONFORMATIONAL ANALYSIS,

AND

STEREOELECTRONIC EFFECTS
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Acid Hydrolysis of Tricyclic Orthoester

P. Deslongchamps, Y.L. Dory, S. Li. 

Heterocycles 1996, 42, 617. 
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Reaction Pathways of Hydrolysis of Orthoester 

P. Deslongchamps, Y.L. Dory, S. Li. 

Heterocycles 1996, 42, 617. 
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lower than b attack lower than b attack
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DIFFERENCE OF REACTIVITY BETWEEN OXENIUM AND DIOXENIUM IONS
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ORTHOESTERS REACT WITH GRIGNARD REAGENTS TO YIELD ACETALS AND KETALS

N.B.  Leaving OCH3 group and incoming alkyl group prefer axial orientation.

3 and 4 (R1 = R2 = H;  R1 = R2 = CH3;  R1 = CH3,  R2 = H)

Grignard Reagent (R1 = CH3,  C2H5,  (CH3)2CH,  p-RCH6H4)

Orthoester 3 gives 5 with axial R group;  4 is unreactive

Eliel


