# **Gloves: choice and use**

Adopted April 15<sup>th</sup>, 2003

**Comité sectoriel de sécurité du Département de chimie** Université Laval

# Wearing gloves: why?

Gloves are worn for protection. However, gloves do not always protect, and can even be the cause of various problems :

- 1) Allergies, which can develop following frequent exposure to latex. Latex allergies are particularly dangerous since medical treatments, such as operations, become more risky and require specific precautions. The so-called rubber gloves are usually made out of latex, as are gloves used for dishwashing.
- Increased toxicity problems, if a chemical passes through the glove and becomes concentrated at the skin surface, the glove preventing evaporation or thorough washing.
- 3) A false feeling of safety, as we can think we are better protected than we really are.
- 4) Contamination risks for others when someone is wearing gloves outside the lab and touches various objects, such as door handles.

Gloves must therefore be chosen with respect to the chemicals to be manipulated and type of exposure :

- Short exposure, protection against splashes: Disposable gloves, thinner and more comfortable.
- Prolonged exposure, immersion in a solvent, extremely toxic or dangerous chemicals: Reusable gloves, thicker and more importantly, existing in a wider variety of materials, adapted to many uses.

## How should gloves be used ?

- 1) Choose gloves made out of a material appropriate for the intended use;
- Inspect gloves before use to verify that they show no defects (holes, cracks, etc) (see following page);
- Remove gloves when exiting the lab or once the breakthrough time of the glove is exceeded (see definition at end of document), taking care not to touch the external surface of the gloves with your hand;
- Wash and air dry reusable gloves (if they have not been in contact with a toxic substance that could continue to migrate in the glove, and eventually contaminate the skin during a future use);
- 5) Throw out disposable gloves.

### How to verify gloves before use :

Source : Canadian Center for Occupational Health and Safety http://www.ccohs.ca/oshanswers/prevention/ppe/gloves.html# 1 5



Figure 1

Hold cuff as illustrated, with thumbs inside, stretch cuff slightly.



Figure 2

Figure 3

Swing glove outward and over towards the face, two or three times, trapping air inside.

Squeeze inflated portion of glove with left hand, causing rubber to expand and magnify any defect.



Figure 4

If large numbers need testing use a compressed air jig.



Figure 5

Double roll cuff over and grip with right hand.

Reprinted with the permission of the Canadian Centre for Occupational Health and Safety (CCOHS), 135 Hunter Street East, Hamilton (Ontario) L8N 1M5; Telephone : (905) 572-4400; Toll free 1-800-263-8466; Fax : (905) 572-4500; e-mail : inquiries@ccohs.ca

# How to choose gloves of appropriate composition?

1) If you are working with a particularly dangerous chemical, consult the Materials safety data sheet (MSDS) of the chemical or the data bank of one of the following manufacturers :

Best Gloves : <u>http://www.chemrest.com/French/French%20CHEMREST%20Title.htm</u>

North Company (software available on the Web) : <a href="http://www.northsafety.com/feature\_ezguide.htm">http://www.northsafety.com/feature\_ezguide.htm</a>

Mapa Company : http://www.mapaglove.com/ce/ChemicalSearch.asp

 For protection against splashes or short contacts with chemicals in general: make a list of the main chemicals or chemical classes and choose according to a general table (see annex).

You must also choose the thickness and decide if you want powdered or non powdered gloves. The latter are easier to slip on, but can also be a cause of allergy and decreases the lifetime of the gloves.

The following tables indicate the main types of disposable and reusable gloves on the market, and their availability in the chemistry stores of Vachon Pavillon :

| Material     | Availability at<br>the chemistry<br>store | Approx. cost | Recommended<br>for                    | Not<br>recommended<br>for (non-<br>exhaustive list) | Comments               |
|--------------|-------------------------------------------|--------------|---------------------------------------|-----------------------------------------------------|------------------------|
| Latex        | President's<br>choice<br>(powdered)       | 8 \$ / 100   | Diluted acids<br>and bases            | Organics                                            | Can cause<br>allergies |
| Nitrile      | Sensicare,<br>Maxxim (non-<br>powdered)   | 14 \$ / 100  | Organics                              | Organochlorinated                                   |                        |
| Polyethylene |                                           | 10 \$ / 100  |                                       |                                                     | Not<br>comfortable     |
| Vinyle (PVC) | Sensicare,<br>Maxxim<br>(powdered)        | 8 \$ / 100   | Acids, bases,<br>amines,<br>peroxides | Organics                                            |                        |
| Vinyle (PVC) | Fisherbrand<br>(non-powdered)             | 13 \$ / 100  | Acids, bases,<br>amines,<br>peroxides | Organics                                            |                        |

#### Disposable gloves :

## Reusable gloves :

| Material                                 | Availability at<br>the chemistry<br>store | Approx. cost | Recommended<br>for                                       | Not<br>recommended<br>for (non-<br>exhaustive list)          | Comments                            |
|------------------------------------------|-------------------------------------------|--------------|----------------------------------------------------------|--------------------------------------------------------------|-------------------------------------|
| Rubber gloves<br>(dishwashing<br>gloves) | Best Value<br>Master<br>VML-09            | 1\$          | Diluted acids<br>and bases,<br>alcohols                  | Organics                                                     | Can cause<br>allergies<br>(latex)   |
| Neoprene                                 |                                           | 13 \$        | Acids, bases,<br>peroxides,<br>hydrocarbons,<br>alcohols | Halogenated and aromatics                                    |                                     |
| Viton                                    |                                           | 100 \$       | Aromatics and<br>chlorinated<br>solvents                 |                                                              |                                     |
| Silvershield                             |                                           | 7\$          | Most chemicals                                           |                                                              | Not<br>comfortable:<br>not adjusted |
| Butyl rubber                             |                                           | 80 \$        | Ketones, esters                                          | Aliphatics,<br>aromatics,<br>halogenated<br>chemicals, acids |                                     |

**Note :** Approximate prices in Canadian dollars at the chemistry stores or in the 2003-2004 Aldrich catalogue. Price varies with thickness, sterility and manufacturer.

# **Evaluation Parameters**

- Degradation : Changes in physical characteristics following contact with a chemical (gloves becomes softer, easily tearable or brittle).
- **Permeation** : Speed at which a chemical penetrates the glove.
- Breakthrough time (BT) : Time required for a chemical to pass through the glove. This is the useful lifetime limit for a glove, and should be the main choice criteria.

For further information, see:

http://www.labsafety.com/refinfo/ezfacts/ezf191.htm http://www.irsst.qc.ca/htmfr/pdf\_txt/R-104.pdf http://membership.acs.org/c/chas/Magazine/hotarticles/97/novdec/latex.html http://www.cdc.gov/niosh/latexalt.html http://www.cdc.gov/niosh/latexpg.html

## CHEMICAL RESISTANCE CHART ASTM Breakthrough Times in Minutes and ISEA/CE Ratings for Best Gloves

#### **Explanation of Ratings**

BTT or Breakthrough times are given in minutes and represent the Normalized breakthrough times required by ASTM F 739-96 Method for Permeation. The ratings are a part of the ANSI/ISEA 105-2000 American National Standard for Hand Protection Selection Criteria. The ratings range from 0 to 6 with 6 being the best choice.

#### **Chemical Resistance Ratings**

- 0 < 10 minute breakthrough time
- $1 \ge 10$  minute breakthrough time
- $2 \ge 30$  minute breakthrough time
- $3 \ge 60$  minute breakthrough time
- $4 \ge 120$  minute breakthrough time
- $5 \ge 240$  minute breakthrough time
- 6 > 480 minute breakthrough time

| Chemical by Class       | Neoprene   |        | Nitrile    |        | Rubber     |        | PVC        |        | Butyl      |        | Viton      |        |
|-------------------------|------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|------------|--------|
| Aliphatic Solvents      | <u>BTT</u> | Rating |
| 1. Cyclohexane          | 228        | 4      | >480       | 6      | NR         | 0      | 88         | 3      | 44         | 2      | >480       | 6      |
| 2. Gasoline (unleaded)  | 46         | 2      | >480       | 6      | NR         | 0      | 22         | 1      | NR         | 0      | >480       | 6      |
| 3. Heptane              | >480       | 6      | >480       | 6      | 24         | 1      | 39         | 2      | 23         | 1      | >480       | 6      |
| 4. Hexane               | 173        | 4      | >480       | 6      | 21         | 1      | 29         | 1      | 13         | 1      | >480       | 6      |
| 5. Isooctane            | >480       | 6      | >480       | 6      | 57         | 2      | 114        | 3      | 56         | 2      | >480       | 6      |
| 6. Kerosene             | >480       | 6      | >480       | 6      | NR         | 0      | >480       | 6      | 94         | 3      | >480       | 6      |
| 7. Petroleum Ether      | 99         | 3      | >480       | 6      | 5          | 0      | 19         | 1      | 15         | 1      | >480       | 6      |
| Acids, Organic          |            |        |            |        |            |        |            |        |            |        |            |        |
| 8. Acetic Acid 84%      | >480       | 6      | 240        | 5      | >480       | 6      | 300        | 5      | >480       | 6      | >480       | 6      |
| 9. Formic Acid 90%      | >480       | 6      | 75         | 3      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| Acids, Mineral          |            |        |            |        |            |        |            |        |            |        |            |        |
| 10. Battery 47%         | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| 11. Hydrochloric 37%    | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| 12. Hydrofluoric 48%    | >480       | 6      | 60         | 3      | 45         | 2      | 110        | 3      | >480       | 6      | >480       | 6      |
| 13. Muriatic 10%        | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| 14. Nitric 70%          | >480       | 6      | NR         | 0      | >480       | 6      | 240        | 5      | >480       | 6      | >480       | 6      |
| 15. Sulfuric 97%        | >480       | 6      | 180        | 4      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| Alcohols                |            |        |            |        |            |        |            |        |            |        |            |        |
| 16. Amyl                | >480       | 6      | >480       | 6      | >480       | 6      | 116        | 3      | >480       | 6      | >480       | 6      |
| 17. Butyl               | >480       | 6      | >480       | 6      | >480       | 6      | 155        | 4      | >480       | 6      | >480       | 6      |
| 18. Cresols             | >480       | 6      | NR         | 0      | 371        | 5      | >480       | 6      | >480       | 6      | >480       | 6      |
| 19. Ethyl               | >480       | 6      | 225        | 5      | >480       | 6      | 66         | 3      | >480       | 6      | >480       | 6      |
| 20. Methyl              | 64         | 3      | 28         | 1      | 82         | 3      | 39         | 3      | >480       | 6      | >480       | 6      |
| 21. Isobutyl            | >480       | 6      | >480       | 6      | >480       | 6      | 138        | 4      | >480       | 6      | >480       | 6      |
| Aldehydes               |            |        |            |        |            |        |            |        |            |        |            |        |
| 22. Acetaldehyde        | 1          | 0      | NR         | 0      | 55         | 2      | 13         | 1      | >480       | 6      | NR         | 0      |
| 23. Benzaldehyde        | 93         | 3      | NR         | 0      | 81         | 3      | NR         | 0      | >480       | 6      | >480       | 6      |
| 24. Formaldehyde        | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| 25. Furfural            | 116        | 3      | NR         | 0      | >480       | 6      | 85         | 3      | >480       | 6      | 298        | 5      |
| Alkalies                |            |        |            |        |            |        |            |        |            |        |            |        |
| 26. Ammonium Hydroxide  | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| 27. Potassium Hydroxide | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |
| 28. Sodium Hydroxide    | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      | >480       | 6      |

## CHEMICAL RESISTANCE CHART ASTM Breakthrough Times in Minutes and ISEA/CE Ratings

| Chemical by Class         | Neoprene   |        | Nitrile    |        | Rubber |        | PVC  |        | Butyl |        | Viton |        |
|---------------------------|------------|--------|------------|--------|--------|--------|------|--------|-------|--------|-------|--------|
| Amides                    | <u>BTT</u> | Rating | <u>BTT</u> | Rating | BTT    | Rating | BTT  | Rating | BTT   | Rating | BTT   | Rating |
| 29. Dimethylacetamide     | 84         | 3      | NR         | 0      | 29     | 1      | 51   | 2      | >480  | 6      | NR    | 0      |
| 30. Dimethylformamide     | 100        | 3      | NR         | 0      | >480   | 6      | NR   | 0      | >480  | 6      | NR    | 0      |
| 31. N-Methyl Pyrrolidone  | 140        | 4      | 34         | 2      | >480   | 6      | 140  | 4      | >480  | 6      | NR    | 0      |
| Amines                    |            |        |            |        |        |        |      |        |       |        |       |        |
| 32. Aniline               | 32         | 2      | NR         | 0      | 1      | 0      | 71   | 3      | >480  | 6      | >480  | 6      |
| 33. Butylamine            | NR         | 0      | NR         | 0      | 45     | 2      | 15   | 1      | 45    | 2      | NR    | 0      |
| 34. Diethylamine          | 13         | 1      | 60         | 3      | 60     | 3      | 107  | 3      | 30    | 2      | 9     | 0      |
| Aromatic Solvents         |            |        |            |        |        |        |      |        |       |        |       |        |
| 35. Benzene               | 15         | 1      | 16         | 1      | NR     | 0      | 13   | 1      | 34    | 2      | >480  | 6      |
| 36. Toluene               | 25         | 1      | 26         | 1      | NR     | 0      | 19   | 1      | 7     | 0      | >480  | 6      |
| 37. Xylene                | 37         | 2      | 41         | 2      | NR     | 0      | 23   | 1      | NR    | 0      | >480  | 6      |
| Chlorinated Solv.         |            |        |            |        |        |        |      |        |       |        |       |        |
| 38. Carbon Tetrachloride  | 73         | 3      | >480       | 6      | NR     | 0      | 46   | 2      | 53    | 2      | >480  | 6      |
| 39. Chloroform            | 23         | 1      | 6          | 0      | NR     | 0      | 10   | 1      | 21    | 1      | >480  | 6      |
| 40. Methylene Chloride    | 4          | 0      | 4          | 0      | NR     | 0      | NR   | 0      | 20    | 1      | 113   | 3      |
| 41. Perchloroethylene     | 40         | 2      | >480       | 6      | NR     | 0      | NR   | 0      | 28    | 1      | >480  | 6      |
| 42. Trichloroethylene     | 12         | 1      | NR         | 0      | NR     | 0      | NR   | 0      | 13    | 1      | >480  | 6      |
| 43. 1,1,1-Trichloroethane | 51         | 2      | 49         | 2      | NR     | 0      | 52   | 2      | 72    | 3      | >480  | 6      |
| Esters                    |            |        |            |        |        |        |      |        |       |        |       |        |
| 44. Amyl Acetate          | 110        | 3      | 77         | 3      | NR     | 0      | NR   | 0      | 158   | 4      | NR    | 0      |
| 45. Ethyl Acetate         | 24         | 1      | 30         | 2      | 72     | 3      | 5    | 0      | 212   | 4      | NR    | 0      |
| 46. Methyl Methacrylate   | 27         | 1      | NR         | 0      | 77     | 3      | NR   | 0      | 63    | 3      | NR    | 0      |
| Ethers                    |            |        |            |        |        |        |      |        |       |        |       |        |
| 47. Cellosolve Acetate    | 228        | 4      | 47         | 2      | 107    | 3      | 64   | 3      | >480  | 6      | >480  | 6      |
| 48. Ethyl Ether           | 12         | 1      | 33         | 2      | 11     | 1      | 14   | 1      | 19    | 1      | 29    | 1      |
| 49. Tetrahydrofuran       | 13         | 1      | 5          | 0      | NR     | 0      | NR   | 0      | 24    | 1      | NR    | 0      |
| Gases                     |            |        |            |        |        |        |      |        |       |        |       |        |
| 50. Ammonia, anhydrous    | 29         | 1      | 336        | 5      | 1      | 0      | 60   | 3      | >480  | 6      | >480  | 6      |
| 51. 1,3-Butadiene         | 33         | 2      | >480       | 6      | 25     | 1      | 24   | 1      | 473   | 5      | >480  | 6      |
| 52. Chlorine              | >480       | 6      | >480       | 6      | >480   | 6      | 360  | 5      | >480  | 6      | >480  | 6      |
| 53. Ethylene Oxide        | 21         | 1      | 17         | 1      | 1      | 0      | 360  | 5      | 189   | 4      | 48    | 2      |
| 54. Hydrogen Fluoride     | 210        | 4      | 1          | 0      | 142    | 4      | 1    | 0      | >480  | 6      | >480  | 6      |
| 55. Methyl Chloride       | 84         | 3      | >480       | 6      | 52     | 2      | >480 | 6      | >480  | 6      | >480  | 6      |
| 56. Vinyl Chloride        | 7          | 0      | >480       | 6      | 2      | 0      | 19   | 1      | 268   | 5      | >480  | 6      |
| Ketones                   |            |        |            |        |        |        |      |        |       |        |       |        |
| 57. Acetone               | 35         | 2      | 3          | 0      | 9      | 0      | 7    | 0      | >480  | 6      | NR    | 0      |
| 58. Methyl Ethyl Ketone   | 30         | 2      | NR         | 0      | 12     | 1      | NR   | 0      | 202   | 4      | NR    | 0      |
| 59. MIBK                  | 41         | 2      | NR         | 0      | 38     | 2      | NR   | 0      | 292   | 5      | NR    | 0      |
| Nitriles                  |            |        |            |        |        |        |      |        |       |        |       |        |
| 60. Acetonitrile          | 65         | 3      | 6          | 0      | 16     | 1      | 24   | 1      | >480  | 6      | NR    | 0      |
| 61. Acrylonitrile         | 27         | 1      | NR         | 0      | 48     | 2      | 14   | 1      | >480  | 6      | 55    | 2      |

This information has been provided by Best Manufacturing Company and is applicable to Best gloves only. For additional Data and glove specifications, please visit <u>www.chemrest.com</u>