Stratégies vertes en synthèse

Principes

- Choix de plusieurs voies synthétiques pour une même molécule
- Réactions en cascade

 - ✓ Réactions en un seul pot✓ Réactions tandem (domino)
- Synthèse convergente plutôt que linéaire
 - ✓ Réactions multi-composantes
- Réactions de condensation
 - ✓ Économie d'atomes
- Procédés catalytiques plutôt que stœchiométriques
 - ✓ Organocatalyse plutôt que catalyse avec métaux lourds
- Éviter groupes protecteurs
- Réacteurs en boucle fermée ("Closed-loop systems") ou en flux ("Continuous flow")

Grandes réactions (votes des industriels)

- 1. Mise au point de méthodologies efficaces et polyvalentes utilisant des métaux peu coûteux et « durables »
- 2. Méthodes générales pour la formation « catalytique et durable » de liaisons amides/peptidiques
- 3. Activation de liaisons C–H aliphatiques et aromatiques utilisant des oxydants verts et conduisant à des sélectivités prédictibles
- 4. Réductions d'amides en évitant LiAlH₄ et B₂H₆ (diborane)
- 5. Substitutions directes d'alcools
- 6. Immobilisation de catalyseurs sans perte significative au niveau de la cinétique
- 7. Hydrogénation asymétrique d'oléfines/énamines/imines non fonctionalisées
- 8. Fluorations/trifluorométhoxylations améliorées
- 9. Réaction de Wittig sans Ph₃PO (stœchiométrique)
- 10. Voies de remplacement pour les processus redox avec C–O et C–N

Souhaits au niveau des solvants (votes des industriels)

- 1. Solvants de substitution des solvants polaires aprotiques
- 2. Solvants de substitution des solvants halogénés

- 1. Mise au point de méthodologies efficaces et polyvalentes utilisant des métaux peu coûteux et « durables »
 - Utilisation du Pd : le plus courant
 - Nouvelles approches complémentaires : Ni, Cu, Fe
 - Toxicité : limites de traces résiduelles de métaux dans les médicaments administrés oralement :
 10 ppm Pd, 30 ppm Ni; 1300 ppm Fe
 - Coût: Pd >> Ni >> FePour 100 g: Rh \$7,000

Pt - \$5,000

Pd - \$1,571

Ru - \$ 650

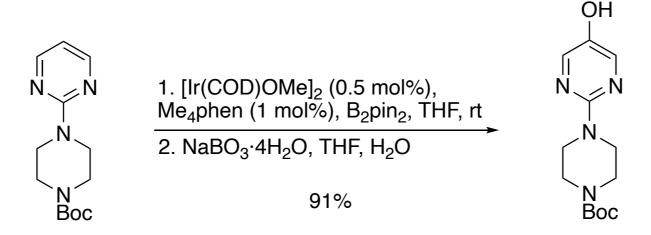
Mn- \$ 0.28

Fe - \$ 0.02

Co - \$ 4.40

1. Mise au point de méthodologies efficaces et polyvalentes utilisant des métaux peu coûteux et « durables »

- Méthode A : 1) PdCl₂(PPh₃)₂, Na₂CO₃, 1,4-dioxane, 88 °C, 2) Florisil, Thio-Silice, 60 %
- Méthode B : Ni(NO₃)₂, PPh₃, K₃PO₄, CH₃CN, 60 °C, **79** %
- Avec Ni, augmentation de rendement, pas besoin de silice pour capturer le métal (scavenger)
 Ni retiré avec NH₃ (aq.)
- Méthode B (Ni) faite sur 54 kg de produit (Genentech)


- 2. Méthodes générales pour la formation « catalytique et durable » de liaisons amides/peptidiques
 - Méthodes au départ d'un acide et d'une amine : DCC, CDI, DIC/HOBt, pyBOP, T3P
 - Dimethyl carbonate (DMC), EtOAc and 2-MeTHF peuvent remplacer CH₂Cl₂ et DMF
 - Méthode au T3P fait sur 34 kg d'amide énantiopur
 88 %, ee 99 %, produit précipité, produit secondaire du T3P soluble dans l'eau

- 3. Activation de liaisons C–H aliphatiques et aromatiques utilisant des oxydants verts et conduisant à des sélectivités prédictibles
 - Opportunité en chimie verte car très économique (Économie d'atomes)
 - Catalyseurs métalliques
 - Également méthodes sans métaux (Paires de Lewis frustrées, ...)
 - Souvent sélectivité ortho
 - Sélectivité méta beaucoup plus difficile
 - Travaux de J.-Q. Yu (Scripps)

- 1) Pd(OAc)₂ (10 mol %), Ac-Gly-OH (20 mol %) AgOAc (3 équiv.), HFIP, 90 °C, 24–40 h
- 2) HCI/EtOH (1:5), 90 °C, 2-4 h

75 % *méta/ortho* = 92:8

- 3. Activation de liaisons C–H aliphatiques et aromatiques utilisant des oxydants verts et conduisant à des sélectivités prédictibles
 - Fonctionnalisation en para
 - Exemple de borylation en para (travaux de Hartwig) :

- 4. Réductions d'amides en évitant LiAlH4 et B2H6 (diborane)
 - Utilisation de silanes: PhSiH₃, Ph₂SiH₂, PMHS (sous-produit industriel peu coûteux)
 Catalyseurs de Ru
 Grandes avancées avec Fe, Zn, B
 Désavantage: économie d'atomes peu efficace

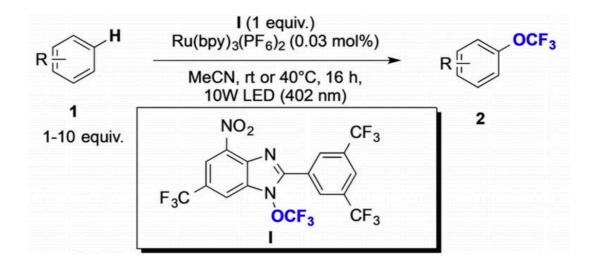
$$\begin{array}{c|c}
 & & Zn(OAc)_2 (10 \text{ mol}\%) \\
\hline
R^1 & & (EtO)_3SiH (3 \text{ mmol}), THF, 22 \text{ h} \\
\hline
R^2 & & \text{rt or } 40^{\circ}\text{C}
\end{array}$$

Utilisation de H₂
 Économie d'atomes élevée

Travaux de Beller:

5. Substitutions directes d'alcools

- Utilisation d'acides de Lewis : triflates métalliques (Sc(OTf)₃), sels de fer, d'indium, ...
- Stratégie d' « emprunt de H₂ » avec des catalyseurs d'iridium (remplacement d'une séquence d'oxydation de Swern puis d'amination réductrice)


- 6. Immobilisation de catalyseurs sans perte significative au niveau de la cinétique
 - Nombreux catalyseurs supportés pour l'hydrogénation : Pd/C, Rh/Al₂O₃, ...
 - Utilisation émergente : oxydation d'alcools
 - Avantages : coûts, recyclage
 - Désavantages : diminution des turn-over
 - Avancées : flux

7. Hydrogénation asymétrique d'oléfines/énamines/imines non fonctionalisées.

- 8. Fluorations/trifluorométhoxylations améliorées
 - Réactif le meilleur en terme d'économie d'atomes = F₂.
 Problème : nécessite un équipement très spécialisé

$$\begin{array}{c|c}
 & O \\
 & N \\$$

- Solutions : utilisation de sources de F⁻ ou F⁺
- Défis actuels : introduction du groupe –CF₃, –OCF₃, –SCF₃, –SeCF₃, –SF₅

- 9. Réaction de Wittig sans Ph₃PO (stœchiométrique)
 - Possibilité de réduire Ph₃PO par un silane

- 10. Voies de remplacement pour les processus redox avec C–O et C–N
 - Utilisation intéressante de O₂ comme oxydant terminal Problème : danger avec solvants inflammables
 - Grand intérêt de H₂O₂: donne H₂O comme sous-produit
 - Photocatalyse en oxydation

Réactions monotopes

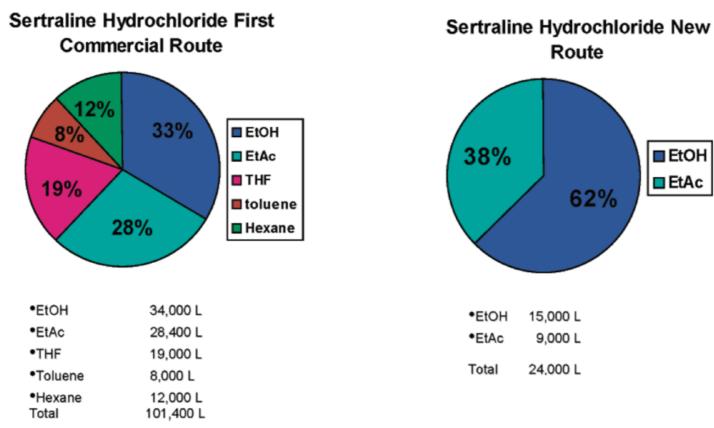
Révision d'une voie réactionnelle originelle d'un médicament

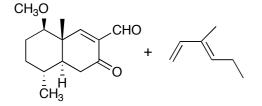
Route comparison between the old and new commercial synthesis of Zoloft

Réactions monotopes

Révision d'une voie réactionnelle originelle d'un médicament

Impact de l'utilisation des solvants




Figure 4. Comparison of solvent utilization (solvents L/1000 kg of sertraline hydrochloride) between the first commercial route and the new route for Zoloft.

 Comparison of solvent utilization (solvents L/1000 kg of sertaline hydrochloride) between the first commercial route and the new route for Zoloft

Économie d'atomes

Réactions à incorporation élevée d'atomes

3.0 LiClO₄

72 %

90 %

Hydrogenation:

Carbonylation:

Hydroformylation:

Oxidation: